Dynamic Programming for the Minimum Tour Duration Problem
نویسندگان
چکیده
The minimum tour duration problem (MTDP) is the variant of the traveling salesman problem with time windows, which consists of finding a time window-feasible Hamiltonian path minimizing the tour duration. We present a new effective dynamic programming (DP)-based approach for the MTDP. When solving the traveling salesman problem with time windows with DP, two independent resources are propagated along partial paths, one for costs and one for earliest arrival times. For dealing with tour duration minimization, we provide a new DP formulation with three resources for which effective dominance and bounding procedures are applicable. This is a non-trivial task because in the MTDP at least two resources depend on each other in a non-additive and non-linear way. In particular, we define consistent resource extension functions (REF) so that dominance is straightforward using componentwise comparison for the respective resource vectors. Moreover, one of the main advantages of the new REF definition is that the DP can be reversed consistently such that the forward DP or any of its relaxations provides bounds for the backward DP, and vice versa. Computational test confirm the effectiveness of the proposed approach.
منابع مشابه
INTEGRATING CASE-BASED REASONING, KNOWLEDGE-BASED APPROACH AND TSP ALGORITHM FOR MINIMUM TOUR FINDING
Imagine you have traveled to an unfamiliar city. Before you start your daily tour around the city, you need to know a good route. In Network Theory (NT), this is the traveling salesman problem (TSP). A dynamic programming algorithm is often used for solving this problem. However, when the road network of the city is very complicated and dense, which is usually the case, it will take too long fo...
متن کاملA Multi-commodity Pickup and Delivery Open-tour m-TSP Formulation for Bike Sharing Rebalancing Problem
Bike sharing systems (BSSs) offer a mobility service whereby public bikes, located at different stations across an urban area, are available for shared use. An important point is that the distribution of rides between stations is not uniformly distributed and certain stations fill up or empty over time. These empty and full stations lead to demand for bikes and return boxes that cannot be fulfi...
متن کاملA Hybrid Dynamic Programming for Inventory Routing Problem in Collaborative Reverse Supply Chains
Inventory routing problems arise as simultaneous decisions in inventory and routing optimization. In the present study, vendor managed inventory is proposed as a collaborative model for reverse supply chains and the optimization problem is modeled in terms of an inventory routing problem. The studied reverse supply chains include several return generators and recovery centers and one collection...
متن کاملApplications of a Dynamic Programming Approach to the Traveling Salesman Problem
Consider the following restricted (symmetric or asymmetric) traveling salesman problem: given an initial ordering of the n cities and an integer k > 0, nd a minimum cost tour such that if city i precedes city j by at least k positions in the initial ordering, then city i precedes city j in any optimal tour. Balas [5] has proposed a dynamic programming algorithm that solves this problem in time ...
متن کاملA New Multi-Objective Model for Dynamic Cell Formation Problem with Fuzzy Parameters
This paper proposes a comprehensive, multi-objective, mixed-integer, nonlinear programming (MINLP) model for a cell formation problem (CFP) under fuzzy and dynamic conditions aiming at: (1) minimizing the total cost which consists of the costs of intercellular movements and subcontracting parts as well as the cost of purchasing, operation, maintenance and reconfiguration of machines, (2) maximi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Transportation Science
دوره 51 شماره
صفحات -
تاریخ انتشار 2017